1,Rút gọn:
a, A= (a+b+c+d)\(^2\)+(a+b−c−d)\(^2\)+(a+c−b−d)\(^2\)+(a+d−b−c)\(^2\)
b, B= \(\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right).\left(3^{32}+1\right)\)
2, Cho x+y=a, x.y=b. Tính:
\(a,x^2+y^2\)
\(b,x^3+y^3\)
\(c,x^4+y^4\)
\(d,x^5+y^5\)
3,
a, Cho x+y=z, \(x^2+y^2=10.\)Tính \(x^3+y^3\)
b, x+y=a, \(x^2+y^2=b.\)Tính \(x^3+y^3\)theo a,b.
Giúp mk với! Thanks.