giả sử x1 và x2 là nghiệm của pt :\(x^2+2kx+4=0\) Tìm tất cả các giá trị của k sao cho \(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2>=3\)
Gọi \(x_1,x_2\)là hai nghiệm của phương trình \(x^2-2kx-\left(k-1\right)\left(k-3\right)=0\)
Khi đó giá trị của \(\frac{1}{4}\left(x_1+x_2\right)^2+x_1.x_2-2\left(x_1+x_2\right)\)
Gọi \(x_1;x_2\)là hai nghiệm của phương trình : \(x^2-2kx-\left(k-1\right)\left(k-3\right)=0\).Khi đó \(\frac{1}{4}\left(x_1+x_2\right)^2+x_1.x_2-2\left(x_1-x_2\right)=....\)
Bài 1: Cho phương trình: \(2x^2+3mx-\sqrt{2}=0\)có hai nghiệm \(x_1,x_2\). Tìm GTNN của :
\(M=\left(x_1-x_2\right)^2+\left(\frac{1+x_2^2}{x_1}-\frac{1+x_2^2}{x_2}\right)^2\)
Bài 2: Cho phương trình: \(x^2+\left(m-1\right)x-6=0\). Tìm \(m\)để phương trình có 2 nghiệm phân biệt sao cho biểu thức
\(A=\left(x_1^2-9\right)\left(x_2^2-4\right)\)đạt GTLN
Help me! tks very much
Cho phương trình \(x^2-2\left(m+1\right)x+2m-3=0\) . Tìm các giá trị của m để phương trình có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn biểu thức \(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|\)đạt giá trị nhỏ nhất
Giả sử \(x_{1;}x_2\)là nghiệm của phương trình \(x^2+kx+a=0\)với \(a\ne0\)và \(a;k\inℝ\)
Tìm mọi giá trị của a để có bất đẳng thức:
\(\left(\frac{x_1}{x_2}\right)^3+\left(\frac{x_1}{x_2}\right)^3\le52\)
phương tình \(x^2+2mx+4=0\) (m là tham số)
tìm tất cả giá trị của m để phương trìn có hai nghiệm \(x_1,x_2\)thõa mãn \(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)
Bài 2: Số đo độ dài hai cạnh góc vuông của một tam giác vuông là nghiệm của phương trình bậc hai \(\left(m-2\right)x^2-2\left(m+1\right)x+m+7=0.\)Định m để số đo đường cao ứng với cạnh huyền của tam giác đã cho là \(\frac{2}{\sqrt{5}}\)
Bài 3: Cho phương trình \(x^2-2\left(m+1\right)x+2m=0\)
1. Chứng minh phương trình có hai nghiệm phân biệt
2. Tìm giá trị nhỏ nhất của biểu thức: \(A=\frac{x_1^2+x_2^2}{x_1\left(1-x_2\right)+x_2\left(1-x_1\right)}\)
3. \(\left|x_1-x_2\right|=4\)
4. \(x_1^3+x_1x_2^2=x_2^3+x_2x_1^2\)
Xác định các giá trị của m để phương trình \(x^2-x+1-m=0\) có 2 nghiệm thực \(x_1,x_2\) thỏa mãn đẳng thức \(5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\)