Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...\frac{1}{2^{1999}}=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{2^3}\right)+...\left(\frac{1}{2^{1998+1}}+...\frac{1}{2^{1999}}\right)>1+\frac{1}{2}+\frac{1}{2^2.2}+\frac{1}{2^3.2^2}+...+\frac{1}{2^{1999}-2^{1998}}=1+\frac{1}{2}.1999=1000,5>1000\)