Cho Tam giác ABC, qua mỗi đỉnh A,B,C vẽ các đường song song với cạnh đối diện, các đường này cắt nhau tạo thành tam giác DEF.
a, Chứng minh CF,AD,BE đồng quy.
b, Chứng minh 3 đường cao của tam giác ABC là 3 đường trung trực của tam giác DEF.
Cho tam giác ABC. Gọi I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E và F. Chứng minh rằng EF = BE + CF.
Cho tam giác ABC cân tại A, BE và CF là 2 đường trung tuyến của tam giác ABC, BE cắt CF tại O
a, Chứng minh: BE =CF
b, Chứng minh: AO vuông góc với BC
c, Biết AB=13cm;BC=10cm. Tính OB
Cho tam giác ABC. Gọi I là điểm nằm trong tam giác và cách đều 3 cạnh của tam giác đó . Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt ở E và F. Chứng minh EF=BE+CF
cho tam giác ABC, kẻ BE vuông góc AC và CF vuông gọc AB, cho BE = CF. Gọi O là giao điểm của BE và CF
a) Chứng minh tam giác BEC = tam giác CFB
b) Chứng minh tam giác ABC cân
c) Chứng minh EF song song BC
D) Chứng minh AO là đường trung trực của BC
Cho tam giác abc vuông tại a có ab bằng 6cm bc bằng 10cm a tính ac b trên tia đối của tia ab lấy điểm d sao cho ad bằng ab chứng minh Tam giác abc bằng tam giác adc c đường thẳng qua a song song với bc cắt CD tại E chứng minh Tam giác EAC cân
Cho tam giác ABC. Kẻ BE vuông góc với AC, CF vuông góc với AB. Biết BE = CF = 8cm, độ dài BF và BC tỉ lệ 3 và 5
a, Chứng minh tam giác ABC cân
b, Tính cạnh BC
c, BE và CF cắt nhau tại O. Nối AO và EF. Chứng minh đường thẳng AO là trung trực của EF
Cho tam giác ABC, ba đường trung tuyến AD, BE, CF. Từ F kẻ đường thẳng song song với AD cắt ED tại I.
a) Chứng minh rằng IC//BE và IC=BE.
b) Cho biết AD⊥BE, chứng minh ICF là tam giác vuông và chu vi của tam giác này bằng tổng độ dài ba đường trung tuyến của tam giác ABC.