Xét tứ giác APQD có
AP//QD
AP=QD
DO đó: APQD là hình bình hành
mà AP=AD
nên APQD là hình thoi
mà \(\widehat{PAD}=90^0\)
nên APQD là hình vuông
=>Hai đường chéo AQ và PD vuông góc với nhau tại trung điểm của mỗi đường và bằng nhau
=>H là trung điểm chung của AQ và PD và AQ vuông góc PD tại H
Xét tứ giác BPQC có
BP//QC
BP=QC
Do đó: BPQC là hình bình hành
mà BP=BC
nên BPQC là hình thoi
=>BQ vuông góc với CP tại trung điểm của mỗi đường
hay K là trung điểm chung của BQ và CP
Xét ΔDPC có
PQ là đường trung tuyến
PQ=CD/2
Do đó: ΔDPC vuông tại P
Xét tứ giác PHQK có
\(\widehat{PHQ}=\widehat{PKQ}=\widehat{HPK}=90^0\)
Do đó: PHQK là hình chữ nhật
mà PH=QH
nên PHQK là hình vuông