Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoàn Thu Thuỷ

1.Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)

CM\(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\ge\frac{3\sqrt{13}}{2}\)

2.Tìm giá trị nhỏ nhất của\(A=\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\)(Với x,y>0)

Kiệt Nguyễn
8 tháng 2 2021 lúc 20:23

1. Áp dụng Min - cốp - ski, ta được: \(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)\(\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)\(\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)(Bunyakovsky dạng phân thức)

Đặt \(t=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)thì ta cần chứng minh: \(\sqrt{\frac{729}{4t^2}+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow\frac{729}{4t^2}+t^2\ge\frac{117}{4}\)\(\Leftrightarrow\frac{\left(t+3\right)\left(t-3\right)\left(2t+9\right)\left(2t-9\right)}{4t^2}\ge0\)*đúng bởi \(t-3\le0;t+3>0;2t+9>0;2t-9< 0;4t^2>0\)*

Đẳng thức xảy ra khi t = 3 hay a = b = c = 1

2. Ta có: \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3=\frac{\left(x^2-y^2\right)^2\left(x^4+y^4+x^2y^2\right)}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)\(\Rightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)

Đẳng thức xảy ra khi x = y

Khách vãng lai đã xóa

Các câu hỏi tương tự
công hạ vy
Xem chi tiết
Phúc Trần
Xem chi tiết
Đen đủi mất cái nik
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Minh Khôi
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Trần Nguyễn Khánh Linh
Xem chi tiết
Phạm Mỹ Châu
Xem chi tiết
Trương Quang Bảo
Xem chi tiết