1.cho a,b,c là các số thực t/m \(a^3\)-\(b^2\)-b=\(b^3\)-\(c^2\)-c=\(c^3\)-\(a^2\)-a=\(\frac{1}{3}\)
c/m:a=b=c
2.cho a,b,c>0 và P=\(\frac{a^3}{a^2+ab+b^2}\)+\(\frac{b^3}{b^2+bc+c^2}\)+\(\frac{c^3}{c^2+ac+a^2}\)
Q=\(\frac{b^3}{a^2+ab+b^2}\)+\(\frac{c^3}{b^2+bc+c^2}\)+\(\frac{a^3}{c^2+ac+a^2}\)
a) c/m P=Q
b) cm: P>=\(\frac{a+b+c}{3}\)
\(1.\) Đang duyệt
\(2a.\)
Ta có:
\(P-Q=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}-\frac{b^3}{a^2+ab+b^2}-\frac{c^3}{b^2+bc+c^2}-\frac{a^3}{c^2+ac+a^2}\)
\(\Leftrightarrow\) \(P-Q=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}\)
\(\Leftrightarrow\) \(P-Q=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}+\frac{\left(b-c\right)\left(b^2+bc+c^2\right)}{b^2+bc+c^2}+\frac{\left(c-a\right)\left(c^2+ac+a^2\right)}{c^2+ac+a^2}\)
\(\Leftrightarrow\) \(P-Q=a-b+b-c+c-a\) (do \(a,b,c\ne0\) )
\(\Leftrightarrow\) \(P-Q=0\)
Vậy, \(P=Q\) \(\left(đpcm\right)\)
\(1.\)
Theo đề bài, ta có:
\(a^3=b^2+b+\frac{1}{3}\) \(\left(1\right)\)
\(b^3=c^3+c^2+\frac{1}{3}\) \(\left(2\right)\)
\(c^3=a^3+a^2+\frac{1}{3}\) \(\left(3\right)\)
Vì \(b^2+b+\frac{1}{3}=\left(b+\frac{1}{2}\right)^2+\frac{1}{12}\ge\frac{1}{12}>0\) nên từ \(\left(1\right)\) \(\Rightarrow\) \(a^3>0\) , tức là \(a>0\)
Tương tự, \(b,c>0\)
Do vai trò hoán vị của các ẩn \(a,b,c\) là như nhau nên có thể giả sử \(a=max\left\{a,b,c\right\}\) hay \(a\ge b\) \(;\) \(a\ge c\)
Do đó,
\(\text{+) }\) Từ \(\left(1\right)\) \(;\) \(\left(3\right)\) , ta có:
\(a^3=b^2+b+\frac{1}{3}\le a^2+a+\frac{1}{3}=c^3\)
Theo đó, \(a^3\le c^3\) hay \(a\le c\)
Mà \(a\ge c\) \(\left(cmt\right)\)
\(\Rightarrow\) \(a=c\) \(\left(\text{*}\right)\)
Lại có:
\(\text{+) }\) Từ \(\left(2\right)\) \(;\) \(\left(3\right)\) , ta có:
\(b^3=c^2+c+\frac{1}{3}=a^2+a+\frac{1}{3}=c^3\) (do \(a=c\) )
nên \(b^3=c^3\) , tức là \(b=c\) \(\left(\text{**}\right)\)
Vậy, từ \(\left(\text{*}\right)\) và \(\left(\text{**}\right)\) , suy ra \(a=b=c\)