Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
Bài 1 Cho x,y,z là 3 số thực thỏa mãn điều kiện:
\(\hept{\begin{cases}x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{cases}}\)
Tính tích P= x.y.z
Bài 2: Chứng minh \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}< \frac{1}{3}\)
Bài 3: Tìm GTNN, GTLN của biểu thức:
A=\(2\sqrt{x-1}+\sqrt{10-4x}\)
Bài 4: Cho 3 số thực dương a,b,c. Chứng minh
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge2\)
Bài 5:
Cho p là số nguyên tố lẻ. Chứng minh \(3^p-2^p-1\)chia hết cho 6p
Bài 6:
Tìm tất cả các số nguyên dương m,n sao cho \(m^3+n^3+15mn=125\)
Bài 7:
Tìm tất cả các số tự nhiên n sao cho A= \(9n^2+9n-8\) là một số chính phương.
Làm câu nào cũng được, mấy bạn giúp mik vs, tk cho
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = \(\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}\)
Bài 2: Tìm các số thực \(x\geq 0\) sao cho E = \(\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}\) nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn \(\sqrt{x}+\sqrt{y-2}=2\) và \(\sqrt{y+1}+\sqrt{z-3}=3\) và \(\sqrt{z+5}+\sqrt{x+3}=5\)
Bài 4: CMR \(2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3\)
Bài 5: CMR \(\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2 \)
1.tìm tất cả các số nguyên dương (a:b) sao cho (a+b^2) chi hêt cho (a^2b-1)
2.tìm x,y,z là số tự nhiên tm \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
BĐT+TÌM CỰC TRỊ
1.Cho x,y,z là các số dương thỏa mãn xyz >= x+y+z+2. Tìm Max x+y+z?
2.Cho x,y,z t/m xy+yz+zx=4. Tìm Min A=x^4+y^4+z^4
3. Cho a,b,c với a>c;b>c>0. CMR: \(\sqrt{c\left(a+c\right)}+\sqrt{c\left(b-c\right)}
Bài 1: Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 - 2xy - x + y + 3 = 0
Bài 2: Giải phương trình nghiệm nguyên: ( y2+1 )( 2x2+x+1) = x+5
Bài 3: Cho các số thực dương a,b thỏa mãn a + b = 2.
Tìm giá trị nhỏ nhất của biểu thức : P = \(\frac{a}{\sqrt{4-a^2}}+\frac{b}{\sqrt{4-b^2}}\)
Cho a; b; c là các số số nguyên dương thỏa mãn \(a+b+c=1\) . Tìm Max của
\(A=\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+xz}}+\dfrac{z}{z+\sqrt{z+xy}}\)
1) Cho x > 1. Tìm GTNN của: \(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)
2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.
3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)
4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
5) Cho x, y > 1. Tìm GTNN của \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
6) Cho x, y, z > 0 thỏa mãn: \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)
7) Cho a, b, c > 0. CMR:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
8) Cho x>y>0. và \(x^5+y^5=x-y\). CMR: \(x^4+y^4<1\)
9) Cho \(1\le a,b,c\le2\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
10) Cho \(x,y,z\ge0\)CMR: \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\le\sqrt[3]{\frac{x+y}{2}}+\sqrt[3]{\frac{y+z}{2}}+\sqrt[3]{\frac{z+x}{2}}\)
11) Cho \(x,y\ge0\)thỏa mãn \(x^2+y^2=1\)CMR: \(\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)
12) Cho a,b,c > 0 và a + b + c = 12. CM: \(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)
13) Cho x,y,z < 0 thỏa mãn \(x+y+z\le\frac{3}{2}\). CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge3\sqrt{17}\)
14) Cho a,b > 0. CMR: \(\left(\sqrt[6]{a}+\sqrt[6]{b}\right)\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\le4\left(a+b\right)\)
15) Với a, b, c > 0. CMR: \(\frac{a^8+b^8+c^8}{a^3.b^3.c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
16) Cho x, y, z > 0 và \(x^3+y^3+z^3=1\)CMR: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)
1. Cho các số \(a,b,c\)dương thỏa mãn \(ab+ac+bc=1\)
CMR : P= \(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{9}{4}\)
2. Cho x,y,z là các số thực dương thỏa mãn xyz=1
Tìm GTLN của biểu thức \(A=\frac{1}{x^3+y^3+1}+\frac{1}{z^3+y^3+1}+\frac{1}{z^3+x^3+1}\)
3. Giải pt
a) \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b)\(CM:\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
c) Cho đường thẳng y= (m-2)x + 2 (d). CMR đg thẳng (d) luôn đi qua 1 điểm cố định với mọi giá trị của m
4. Cho x,y là các số dương
a) CM \(\frac{x}{y}+\frac{y}{x}\ge2\)
b) Tìm Min M = \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)