chứng minh rằng nếu phương trình \(ax^2+bx+c=x\left(a\ne0\right)\)vô nghiệm thì phương trình \(a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=x\)cũng vô nghiệm
Chứng minh rằng phương trình bậc hai \(ax^2+bx+c=0\left(a\ne0\right)\)luôn luôn có nghiệm với a,b,c là các số thực thỏa mãn \(a+2b+4c=0\)
3. Viết hệ thức Vi-et đối với các nghiệm của phương trình bậc hai
a x 2 + b x + c = 0 ( a ≠ 0 )
Nêu điều kiện để phương trình a x 2 + b x + c = 0 (a ≠ 0) có một nghiệm bằng 1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
1954 x 2 + 21 x – 1975 = 0
Nêu điều kiện để phương trình a x 2 + b x + c = 0 ( a ≠ 0 ) có một nghiệm bằng -1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
2005 x 2 + 104 x – 1901 = 0
Viết hệ thức Vi-et đối với các nghiệm của phương trình bậc hai
ax2 + bx + c = 0 (a ≠ 0)
Nêu điều kiện để phương trình ax2 + bx + c = 0 (a ≠ 0) có một nghiệm bằng 1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
1954x2 + 21x – 1975 = 0
Nêu điều kiện để phương trình ax2 + bx + c = 0 (a ≠ 0) có một nghiệm bằng -1. Khi đó, viết công thức nghiệm thứ hai. Áp dụng: nhẩm nghiệm của phương trình
2005x2 + 104x – 1901 = 0
Cho phương trình ax2 + bx + c = 0 \(\left(a\ne0\right)\)có hai nghiệm là x1 , x2 thỏa mãn ax1 + bx2 + c = 0 . Tính giá trị của biểu thức :
\(P=a^2c+ac^2+b^3-3abc\).
Đối với phương trình `ax^2 +bx +c=0` \(\left(a\ne0\right)\) và biệt thức \(\Delta=b^2-4ac\)
`-` Nếu \(\Delta>0\) thì phương trình có hai nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a};x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)
`-` Nếu \(\Delta=0\) thì phương trình có nghiệm kép \(x_1=x_2=-\dfrac{b}{2a}\)
`-` Nếu \(\Delta< 0\) thì phương trình vô nghiệm
Theo kết luận trên áp dụng với bài sau đây :
`a, 7x^2 -2x+3=0`
`b,6x^2 +x+5=0`
`c, 6x^2 +x-5=0`
tìm công thức nghiệm của phương trình bậc 2 một ẩn
\(ax^2+bx+c=0\) \(\left(a\ne0\right)\)
P/S ko được coppy trên mạng nhé, làm thật chi tiết, ko ghi đáp án ra
Giả sử phương trình \(ax^2+bx+c=0\left(a\ne0\right)\) có 2 nghiệm là \(x_1\)và \(x_2\). Chứng minh rằng ta có thể phân tích \(ax^2+bx+c=a\left(x-x_1\right)\left(x-x_2\right)\)
cho phương trình \(ax^2+bx+c=0\) \(\left(a\ne0\right)\)có hai nghiệm thuộc đoạn [0;2]. Tìm max của:
\(p=\frac{8a^2-6ab+b^2}{4a^2-2ab+ac}\)