;v bấm máy tính là ra
;v bấm máy tính là ra
rút gọn: A= \(\frac{\frac{3}{2}+\frac{2}{5}+\frac{1}{10}}{\frac{3}{2}+\frac{2}{3}+\frac{1}{12}}\)
CHO \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0,a+b+c=abc\)
CHỨNG MINH \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
bài 3:a)O=AC x BD (x là giao nhá)=> SO \(\perp\) (ABCD)
=> OC=\(a\sqrt{2}\)\(\Rightarrow\widehat{SCO}=60^o\Rightarrow SO=OC.tan60^o=\frac{a\sqrt{6}}{2}\Rightarrow V_{k.chóp}=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.a\frac{\sqrt{6}}{2}.a^2=\frac{a^3\sqrt{6}}{6}\)
b) \(\Delta SAC\)có \(\widehat{SCA=60^o}\)=> \(\Delta SAC\)đều
AE\(\perp\)SC=> AE=\(\frac{a\sqrt{6}}{2}\)
AExSO=G => G là trọng tâm \(\Delta SAC\)=> \(\frac{SG}{SO}\)=\(\frac{2}{3}\)
\(\hept{\begin{cases}BD\perp SO\\BD\perp AC\end{cases}\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SC}\)
(AMEN)\(\perp\)SC => MN \(\perp\)SC => MN //BD => \(\frac{MN}{BD}=\frac{SG}{SO}=\frac{2}{3}\Rightarrow MN=\frac{2}{3}BD=\frac{2a\sqrt{2}}{3}\)
\(S_{AMEN}=\frac{1}{2}MN.AE=\frac{1}{2}.\frac{2a\sqrt{2}}{3}.\frac{a\sqrt{6}}{2}=\frac{a^2\sqrt{3}}{3}\)
\(\frac{V_{SAMEN}}{V_{SABCD}}=\frac{SM}{SB}.\frac{SE}{SC}.\frac{SN}{SD}=\frac{2}{3}.\frac{1}{2}.\frac{2}{3}=\frac{2}{9}\)
\(\Rightarrow V_{SAMEN}=\frac{2}{9}.\frac{a^3\sqrt{6}}{6}=\frac{a^3\sqrt{6}}{27}\)
phần trả lời bên dưới là câu 4
CMR :
\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}\)
giải hệ phương trình
\(32\left(\frac{x}{2}+\frac{y}{2}\right)+\frac{92y}{\frac{x}{2}+\frac{y}{2}+2y}=39\)
\(85x+188y=4,43\)
Giá trị cực đại của hàm số \(y=x+sin2x\) trên \(\left(0;\pi\right)\)là
\(A.\frac{\pi}{6}+\frac{\sqrt{3}}{2}\)
\(B.\frac{2\pi}{3}+\frac{\sqrt{3}}{2}\)
\(C.\frac{2\pi}{3}-\frac{\sqrt{3}}{2}\)
\(D.\frac{\pi}{3}+\frac{\sqrt{3}}{2}\)
Cho a, b, c là các số thực dương thoả mãn a+b+c=3. Chứng minh rằng:
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
(\(\frac{3}{4}\) + \(\frac{1}{2}\) ) X \(\frac{5}{7}\)= ?
#Socnhi#
tìm x\(\left(x-\frac{2}{3}\right)^2=\frac{25}{36}\)