Để ý thấy số hạng tổng quát có dạng tổng của 1\(n(n-2) khi n từ 1-->99 và n lẻ !
khi đó 1\n(n-2)=-1\2n+1\2(n-2)
với n=99 ta có 1\(99.97)=-1\2.99+1\2.97
với n=97 ta có 1\(97.95)=-1\2.97+1\2.95
với n=95 ta có 1\(95.93)=-1\2.95+1\2.93
....
với n=5 ta có 1\(5.3)=-1/2.5+1\2.3
n=3 ta có 1\(3.1)=-1\2.3+1\2.1
khi đó dễ dàng tính được A bằng cách cộng các vế tương ứng và rút gọn ta được A=-1\2.99+1/97-1/2=4751/4603
mình nha
\(\frac{1}{99.97}-\frac{1}{97.95}-...-\frac{1}{5.3}-\frac{1}{3.1}\)
\(=\frac{1}{99.97}-\left(\frac{1}{97.95}+\frac{1}{95.93}+...+\frac{1}{5.3}+\frac{1}{3.1}\right)\)
\(=\frac{1}{99.97}-\left[\frac{1}{2}\left(\frac{1}{97}-\frac{1}{95}+\frac{1}{95}-\frac{1}{93}+....+\frac{1}{5}-\frac{1}{3}+\frac{1}{3}-1\right)\right]\)
\(=\frac{1}{99.97}-\left(\frac{1}{97}-1\right)\)
\(=\frac{1}{9603}-\left(\frac{-96}{97}\right)=\frac{9505}{9603}\)