\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.......+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{10\cdot11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}\cdot-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
= \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
= \(\frac{1}{2}-\frac{1}{11}+0+...+0\)
= \(\frac{9}{22}\)