#)Giải :
Đặt \(A=1+5+5^2+5^3+5^4+...+5^{49}+5^{50}\)
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\)
\(\Rightarrow5A-A=4A=\left(5+5^2+5^3+...+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{49}+5^{50}\right)\)
\(\Rightarrow4A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
Đặt S = 1 + 5 + 52 + 53 + 54 + ........ + 549 + 550
5S = 5 + 52 +53+ 54 + 55 + ........ + 550 +551
5S - S = (5 + 52 +53+ 54 + 55 + ........ + 550 +551) - (1 + 5 + 52 + 53 + 54 + ........ + 549 + 550)
4S =551 - 1
S =(551- 1) : 4
~ Chúc bạn học giỏi ~
~TMT_Nhók~
Gọi \(A=1+5+5^2+5^3+5^4+...+5^{49}+5^{50}\)
\(A=1+5+5^2+5^3+5^4+...+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+5^4+...+5^{49}+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{49}+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+5^4+...+5^{49}+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
A = 1 + 5 + 52 + 53 + 54 + ...+ 549 + 550 (1)
Nhân 2 vế với 5 ta có :
5A=5(1+5+52+53+...+550)
5A=5+52+53+.....+550+551 (2)
LẤY (2)-(1) TA CÓ :
5A=5+52+53+....+551
-A=1+5+52+....+550
4A=551-1
A=\(\frac{5^{51}-1}{4}\)
Có A = 1 + 5 + 52 + 53 + ... + 549 + 550
=> 5A = 5.(1 + 5 + 52 + 53 + ... + 549 + 550)
= 5 + 52 + 53 + 54 + ..... + 550 + 551
=> 5A - A = (5 + 52 +53 + 54 +... + 550 + 551) - (1 + 5 + 52 + 53 + .... + 549 + 550)
=> 4A = 551 - 1
=> A = \(\frac{5^{51}-1}{4}\)