( 1 / 4 . 9 + 1 / 9 . 14 + 1 / 14 . 19 + ... + 1 / 44 .49 ) . (1 - 3 - 5 - 7 - ... - 49) / 89 = ?
M=(1/4*9+1/9*14+1/14*19+...1/44*49)*1-3-5-7-9-...-49/89=-9/28
TÍNH A=[(1/4*9)+(1/9*14)+(1/14*19)+...+(1/44*49)] x (1-3-5-7-...-49)/89
\(A=\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\cdot\frac{1-3-5-7-...-49}{89}\)
\(\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+\frac{1}{19\cdot24}+.....+\frac{1}{44\cdot49}\right)1\frac{-3-5-7-...-49}{89}\)
Tính:
\(\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\cdot\frac{1-3-5-7-...-49}{89}\)
Tính \(A=\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\cdot\frac{1-3-5-7-...-49}{89}\)
\(B=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^{10}\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot27^3+15\cdot4^9\cdot9^4}{6^9\cdot2^{10}+12^{10}}\)
Thực hiện phép tính
a)\(\frac{27^4\cdot2^3-3^{10}\cdot4^3}{6^4\cdot9^3}\)
b)\(\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\)\(\cdot\frac{1-3-5-7-...-49}{89}\)
Chứng tỏ rằng:
\(M=\left(\frac{1}{4}+\frac{1}{9.4}+\frac{1}{14.49}+...+\frac{1}{44.49}\right).\frac{1-3-5-7-9-...-49}{89}=-\frac{9}{28}\)