\(\frac{1}{4\times9}+\frac{1}{9\times14}+\frac{1}{14\times19}+...+\frac{1}{1999\times2004}\)
\(=\frac{1}{5}\times\left(\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{1999\times2004}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{1999}-\frac{1}{2004}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{4}-\frac{1}{2004}\right)\)
\(=\frac{1}{5}\times\frac{500}{2004}=\frac{25}{501}\)