Đặt S=1+3+32+...+3119
3S=3+32+33+...+3120
3S-S=(3+32+33+...+3120)-(1+3+32+...+3119)
2S=3120-1
=>S=\(\frac{3^{120}-1}{2}\)
S= \(1+3^2+...+3^{119}\)
=> 3S=\(3+3^2+...+3^{120}\)
=> 2S =\(3^{120}-1\)
\(S=\frac{3^{120}-1}{2}\)
Đặt S = 1+3+32+.....+ 3199
3S= 3+32+33+.....+3200
3S-S= (3+32+33+.....+3200) - (1+3+32+....... +3199)
2S=3200- 1
S= \(\frac{3^{200}-1}{2}\)