\(\frac{\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{98\times100}}{y}=\frac{147}{50}\)
\(\frac{\frac{1}{2}\times\left(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+...+\frac{2}{98\times100}\right)}{y}=\frac{147}{50}\)
\(\frac{\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)}{y}=\frac{147}{50}\)
\(\frac{\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{100}\right)}{y}=\frac{147}{50}\)
\(\frac{\frac{1}{2}\times\frac{49}{100}}{y}=\frac{147}{50}\)
\(\frac{49}{200}:y=\frac{147}{50}\)
\(y=\frac{49}{200}:\frac{147}{50}\)
\(y=\frac{1}{12}\)