\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+....+\frac{9899}{9900}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+.....+\left(1-\frac{1}{9900}\right)\)
\(=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+\left(1-\frac{1}{3.4}\right)+...+\left(1-\frac{1}{99.100}\right)\)
\(=99-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(=99-\left(1-\frac{1}{100}\right)=99-1+\frac{1}{100}=98+\frac{1}{100}=\frac{9801}{100}\)