A=(1+1999/1).(1+1992/2).(1+1999/3)...(1+1999/1000)/(1+1000/1).(1+1000/2).(1+1000/3)...(1+1000/1999)
Tính A
Tinh
(1 + 1999/1)(1 + 1999/2)......(1 + 1999/1000)
( 1 + 1000/1)(1 + 1000/2)......(1 + 1000/1999)
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
Cho A= 1001/1000^2+1 + 1001/1000^2+2 + .... + 1001/1000^2+1000.
Chứng minh rằng: 1 < A^2 < 4
tính G=\(\frac{\left(1+\frac{1015}{1}\right)\left(1+\frac{1015}{2}\right)\left(1+\frac{1015}{3}\right)...\left(1+\frac{1015}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)\left(1+\frac{1000}{3}\right)...\left(1+\frac{1000}{1015}\right)}\)
Tính: A=((1+2012)(1+2013).....(1+2012/100))/((1+1000/1)(1+1000/2).....(1+1000/2012)
tinh \(G=\frac{\left(1+\frac{2015}{1}\right)+\left(1+\frac{2015}{2}\right)+...+\left(1+\frac{2015}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)+....+\left(1+\frac{1000}{2015}\right)}\)
Tính hợp lý : A = (-1)2.(-1)3.(-1)4......(-1)100
B = ( 1000-13)(1000-23)(1000-33).....(1000-253)
C =(1/2 - 1)(1/3-1) (1/4-1)...(1/2006-1) (1/2007-1)
c\(\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right)....\left(1+\frac{2012}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)....\left(1+\frac{1000}{2012}\right)}\)
Chứng minh rằng 1 < A < 2 :
\(A=\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+...+\frac{1001}{1000^2+1000}\)