`1/2 + 1/6 + 1/12 + 1/20 + ... + 1/110`
` = 1/(1.2) + 1/(2.3) + 1/(3.4) + 1/(4.5) + .... + 1/(10.11)`
` = 1- 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + .... + 1/10 - 1/11`
` = 1 - 1/11`
` = 11/11 - 1/11`
` = 10/11`
Vậy.....
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{110}\)
\(=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+...+\dfrac{1}{10\times11}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=1-\dfrac{1}{11}\)
\(=\dfrac{10}{11}\)