\(\frac{1}{1.3}+\frac{1}{3.2}+\frac{1}{2.5}+...+\frac{1}{99.100}\)
= \(2.\left(\frac{1}{1.3.2}+\frac{1}{3.2.2}+\frac{1}{2.5.2}+...+\frac{1}{99.50.2}\right)\)
= \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
= \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2.\left(\frac{1}{2}-\frac{1}{100}\right)\)
= \(2.\frac{49}{100}\)
= \(\frac{49}{50}\)