\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}=\frac{2013}{2014}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2013}{2014}\)
\(\Rightarrow1-\frac{1}{n+1}=\frac{2013}{2014}\)
\(\Rightarrow\frac{1}{n+1}=1-\frac{2013}{2014}\)
\(\Rightarrow\frac{1}{n+1}=\frac{1}{2014}\)
\(\Rightarrow n+1=2014\)
\(\Rightarrow n=2014-1\)
\(\Rightarrow n=2013\)