\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.100}+1\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{100}\)+1
=\(1-\frac{1}{100}\)+1
=\(\frac{99}{100}+1\)
=\(\frac{199}{100}\)
sorry mk lộn bài này mới đúng :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)+1
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
=\(1-\frac{1}{1000}+1\)
=\(\frac{999}{1000}+1\)
=\(\frac{1999}{1000}\)