Lời giải:
Gọi biểu thức là A.
\(A=256.\frac{1}{8}+\frac{1}{49^2}.7^3+\frac{1}{36^2}.\frac{1}{8^2}.27\\ =32+\frac{1}{7}+\frac{1}{3072}=32\frac{3079}{21504}\)
Lời giải:
Gọi biểu thức là A.
\(A=256.\frac{1}{8}+\frac{1}{49^2}.7^3+\frac{1}{36^2}.\frac{1}{8^2}.27\\ =32+\frac{1}{7}+\frac{1}{3072}=32\frac{3079}{21504}\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{2x^2}\)
2) \(\sqrt{-x}\)
3) \(\sqrt{-x^2-3}\)
4) \(\sqrt{x^2+2x+3}\)
5) \(\sqrt{-a^2+8a-16}\)
6) \(\sqrt[]{16x^2-25}\)
7) \(\sqrt{4x^2-49}\)
8) \(\sqrt{8-x^2}\)
9) \(\sqrt{x^2-12}\)
10) \(\sqrt{x^2+2x-3}\)
11) \(\sqrt{2x^2+5x+3}\)
12) \(\sqrt{\dfrac{4}{x-1}}\)
13) \(\sqrt{\dfrac{-1}{x-3}}\)
14) \(\sqrt{\dfrac{-3}{x+2}}\)
15) \(\sqrt{\dfrac{1}{2a-1}}\)
16) \(\sqrt{\dfrac{2}{3-2a}}\)
17) \(\sqrt{\dfrac{-1}{2a-5}}\)
18) \(\sqrt{\dfrac{-2}{3-5a}}\)
19) \(\sqrt{\dfrac{-a}{5}}\)
20) \(\dfrac{1}{\sqrt{-3a}}\)
1) √(2x-1) <= 8-2x
2) √[(x+1)(4-x)] > x-2
3) √(x-2x^2+1) > 1-x
4) √(x+5) - √(x+4) > √(x+3)
5) √(5x-1) - √(x-1) > √(2x-4)
6) √(x+3) >= √(2x-8) + √(7-x)
7) √(x+2) - √(3-x) < √(5-2x)
8) √(x+1) > 3 - √(x+4)
9) √(5x-1) - √(4x-1)<= 3√x
10) { {√[2(x^2-16)]} / √(x-3) }+ √(x-3) > (7-x) / √(x-3)
Giúp mình 10 câu này với ạaa
Giải các pt sau:
1)x- căn 2x-5=4
2)căn 2x² - 8x +4=x -2
3)căn x²+ x -12=8- x
4)căn x² - 3x -2= căn x -3
5)căn 2x + 1=2 + căn x - 3
6)căn x +2 căn x-1 -căn x - 2 căn x-1=-2
7) căn x-2 +căn x+3 =5
8) căn x² -4x +3 + x² -4x =-1
\(\frac{6}{^{x^2+2}}+\frac{7}{x^2+3}+\frac{12}{x^2+8}-\frac{3x^2+16}{x^2+10}=1\)1
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
1. (x+2).(x+4).(x+6).(x+8) +16 =0
2. (x+1).(x+2).(x+3).(x+4) -24 =0
3.(x-1).(x-3).(x-5).(x-7) -20 =0
giải phương trình hộ mik vs mn ơi huhu
\(\sqrt{x^2+8}-7x=\sqrt{x^2+3}-6\)(1)
\(\Leftrightarrow\sqrt{x^2+8}-3=7x-7+\sqrt{x^2+3}-2\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+8}-3\right)\left(\sqrt{x^2+8}+3\right)}{\left(\sqrt{x^2+8}+3\right)}=7\left(x-1\right)+\frac{\left(\sqrt{x^2+3}-2\right)\left(\sqrt{x^2+3}+2\right)}{\sqrt{x^2+3}+2}\)
\(\Leftrightarrow\frac{x^2+8-9}{\left(\sqrt{x^2+8}+3\right)}=7\left(x-1\right)+\frac{x^2-1}{\sqrt{x^2+3}+2}\)
\(\Leftrightarrow\frac{x^2-1}{\sqrt{x^2+8}+3}-7\left(x-1\right)-\frac{x^2-1}{\sqrt{x^2+3+2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+8}+3}-7-\frac{x+1}{\sqrt{x^2+3}+2}\right)=0\)
\(\Leftrightarrow x-1=0\)
hay \(\frac{x+1}{\sqrt{x^2+8}+3}-7-\frac{x+1}{\sqrt{x^2+3}+2}=0\)(2)
Từ (1), có:
\(\sqrt{x^2+8}-\sqrt{x^2+3}=7x-6>0\)
\(\Leftrightarrow7x-6>0\)
\(\Leftrightarrow x>\frac{6}{7}\)
Khi đó, có:
\(\frac{x+1}{\sqrt{x^2+8}+3}-\frac{\sqrt{x+1}}{\sqrt{x^2+3}+2}<0\)
\(\Rightarrow\frac{x+1}{\sqrt{x^2+8}+3}-\frac{x+1}{\sqrt{x^2+3}+2}-7<0\)
Vậy, pt (2) vô nghiệm
Do đó, pt (1) có 1 nghiệm là x = 1
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
Thực hiện phép tính :
\(\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}+\frac{32}{1+x^{32}}\)