Tham khảo tại đây
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Chúc học tốt!
Đặt \(B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(\Rightarrow3B=3.\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)\)
\(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\)
\(\Rightarrow3B-B=\left(3+1+\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)-\)\(\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\right)\)
\(\Rightarrow2B=3-\frac{1}{2187}\)
\(\Rightarrow B=\left(3-\frac{1}{2187}\right):2\)
\(\Rightarrow B=\frac{6560}{2187}\)
Chắc sai !!!
Đặt A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
= \(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
3A = \(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
Lấy 3A - A = \(\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
2A = \(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}-1-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^7}\)
2A = \(3-\frac{1}{3^7}\)
A = \(\left(3-\frac{1}{3^7}\right):2\)
\(\Rightarrow1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}=\left(3-\frac{1}{3^7}\right):2\)