Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tống Quang HUY

1/(1.3)+1/(2.4)+1/(3.5)+1/(4.6)+...+1/(2021.2023)

Lê Song Phương
18 tháng 3 2023 lúc 20:44

\(P=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{2021.2023}\)

Ta sẽ "tách" P làm 2 phần:

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)

Do đó \(P=A+B\)

Ta có \(A=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2023-2021}{2021.2023}\right)\)

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)\) 

\(A=\dfrac{1011}{2023}\)

Mặt khác, \(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)

\(B=\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2020.2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+\dfrac{8-6}{6.8}+...+\dfrac{2022-2020}{2020.2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{505}{2022}\)

Từ đó \(P=A+B=\dfrac{1011}{2023}+\dfrac{505}{2022}=\dfrac{3065857}{4090506}\)

 


Các câu hỏi tương tự
Ngọc Ánh
Xem chi tiết
VŨ THUẤT
Xem chi tiết
nguyễn ngọc khánh vân
Xem chi tiết
Nguyễn Minh Sơn
Xem chi tiết
Niu niu
Xem chi tiết
Rồng Thần
Xem chi tiết
Lê Hằng Nga
Xem chi tiết
Bùi Thị Ngọc Yến Nhi
Xem chi tiết
FFPUBGAOVCFLOL
Xem chi tiết