`#qlv`
`(11)/(25) . (y + y5 - (23)/(55)) + 3/(14) . (56)/(25) = 1`
`=> (11)/(25) . (6y - (23)/(55)) + (12)/(25) = 1`
`=> (11)/(25) . (6y - (24)/(55)) = 1 - (12)/(25)`
`=> (11)/(25) (6y - (23)/(55)) = (13)/(25)`
`=> 6y - (23)/(55) = (13)/(25) : (11)/(25)`
`=> 6y - (23)/(55) = (13)/(11)`
`=> 6y = (13)/(11) + (23)/(55)`
`=> 6y = 8/5`
`=> y = 8/5 : 6`
`=> y = 8/5 . 1/6`
`=> y = 4/(15)`
Vậy `y = 4/(15)`
\(\dfrac{11}{25}\times\left(y+y\times5-\dfrac{23}{55}\right)+\dfrac{3}{14}\times\dfrac{56}{25}=1\)
\(\Rightarrow\dfrac{11}{25}\times\left(10\times y-\dfrac{23}{55}\right)+\dfrac{12}{25}-1=0\)
\(\Rightarrow\dfrac{22}{5}\times y-\dfrac{23}{125}-\dfrac{13}{25}=0\)
\(\Rightarrow\dfrac{22}{5}\times y=\dfrac{88}{125}\)
\(\Rightarrow y=\dfrac{88}{125}:\dfrac{22}{5}\)
\(\Rightarrow y=\dfrac{4}{25}\)
1125.(y+y5−2355)+314.5625=11125.(�+�5-2355)+314.5625=1
⇒1125.(6y−2355)+1225=1⇒1125.(6�-2355)+1225=1
⇒1125.(6y−2455)=1−1225⇒1125.(6�-2455)=1-1225
⇒1125(6y−2355)=1325⇒1125(6�-2355)=1325
⇒6y−2355=1325:1125⇒6�-2355=1325:1125
⇒6y−2355=1311⇒6�-2355=1311
⇒6y=1311+2355⇒6�=1311+2355
⇒6y=85⇒6�=85
⇒y=85:6⇒�=85:6
⇒y=85.16⇒�=85.16
⇒y=415⇒�=415
Vậy y=415