=1-1\2+1\2-1\3........1\x-1\x+1=2009\2010
=1-1\x+1=2009\2010
<=>1\x+1=1-2009\2010
x+1=1\2010
<=>1\2009=1\2010
=>x+1=2010
=x=2009
=>x=2009
=1-1\2+1\2-1\3........1\x-1\x+1=2009\2010
=1-1\x+1=2009\2010
<=>1\x+1=1-2009\2010
x+1=1\2010
<=>1\2009=1\2010
=>x+1=2010
=x=2009
=>x=2009
1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2009/2010
tìm x
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)
Tìm x thoả mãn:
a)\(\frac{1}{2}x-\frac{3}{4}x-\frac{7}{3}=-\frac{5}{6}\)
b)\(\frac{4}{5}x-x-\frac{3}{2}x+\frac{4}{3}=\frac{1}{2}-\frac{6}{5}\)
c)\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{x.\left(x+1\right)}=\frac{2009}{2010}\)
d)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)
e)\(\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{100}{609}\)
1/1.2+1/2.3+....+1/x.(x+1)=996/997
Tìm x thỏa mãn: x + (x + 1) + (x + 2) + … + 2009 + 2010 = 2010 A.-2010 B.-2008 C.0 D.-2009
1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3
a, 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/ x. (x + 1) = 201
1/1.2+1/2.3+1/3.4+...+1/x.(x+1)=2015/2016
1/1.2+1/2.3+1/3.4+...+1/x.(x+1)=19/20