\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
1/1.2+1/2.3+1/3.4+...+1/99.100
Tính :
1/1.2 + 1/2.3 + 1/3.4 + . . . + 1/99.100
1/(1.2)+1/(2.3)+1/(3.4)+...+1/(99.100)=?
1/1.2+1/2.3+1/3.4+ ... +1/98.99+1/99.100
1 phần 1.2 + 1 phần 2.3 + 1phần 3.4+ .....+1 phần 99.100
Giúp với : 1/1.2+1/2.3+1/3.4+...+1/99.100 = ?
3/4+1/1.2+1/2.3+1/3.4+........+1/99.100
3/4+1/1.2+1/2.3+1/3.4+........+1/99.100
làm phép tính
1/1.2+1/2.3+1/3.4+ ... +1/98.99+1/99.100
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.....+\(\dfrac{1}{99.100}\)