Đặt \(S=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+.....+99}+\frac{1}{50}\)
Đặt E = \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+....+99}\)
\(E=\frac{1}{2.3:2}+\frac{1}{3.4:2}+....+\frac{1}{99.100:2}\)
\(\frac{1}{2}E=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
E = 49/100 : 1/2 = 49/50
Vậy \(S=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)
Tham khảo: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath