tính các tích với n thuộc N; n>2
a) (1-1/2)*(1-1/3)*(1-1/4)...(1-1/n)
b) (1+1/2)*(1+1/3)*(1+1/4)...(1+1/n)
c) (1-1/2^2)*(1-1/3^2)*(1-1/4^2)...(1-1/n^2)
Bài 2: CMR: P = 1/1^2 + 1/1^2+2^2 + 1/1^2+2^2+3^2+...+ 1/1^2+2^2+3^2+...+n^2 < 6/2n+1
tính:(1/2^2-1).(1/3^2-1).(1/4^2-1).....(1/98^2-1).(1/99^2-1)
So sánh A=(1+1/2)*(1+1/2^2)*(1+1/2^4)*(1+1/2^8)*(1+1/2^16) và B=2
1. C/m rằng
S = 1/2^2 - 1/2^4 + 1/2^6 - ... + 1/2^4n-2 - 1/2^4n + ... + 1/2^2002 - 1/2^2004 < 0,2
2. C/m rằng
B = 1 - 1/2^2 - 1/3^2 - 1/4^2 - ... - 1/2004^2 > 1/2004
a) Chứng tỏ rằng: B=1/22+1/32+1/42+1/52+1/62+1/72+1/82 < 1
b) Tinh nhanh: A= 1+1/2 (1+2) +1/3 (1+2+3)+1/4(1+2+3+4)+......+1/16(1+2+3+...+16)
so sánh
a)A=1/2^1+1/2^2+1/2^3+...+1/2^49+1/2^50 với 1
b)B=1/3^1 +1/3^2+1/3^3...+1/3^99+1/3^100 với 1/2
c)C=1/4^1+1/4^2+1/4^3+...+1/4^999+1/4^1000 với 1/3
B=(1/2^2-1)(1/3^2-1)(1/4^2-1)....(1/98^2-1)(1-99^2-1)
1/2+1/2^2+1/2^5+...+1/2^99
1/2-1/2^4+1/2^7-1/2^10+...-1/2^50
giúp nha
B= (1/2^2-1)(1/3^2-1)(1/4^2-1)...(1/100^2-1)
hãy so sánh B với -1/2