Tính:
a,(1+1-1-1-1-1-1-1-1-1-1-1-1)*225*6767437654677*A. Biết A=0
b, x+123456789=0. Tìm x
1+1+1+1+1+1+1+1+1+1 x 0+1=?
1 + 1 + 1 + 1 + 1 + 1 + 1 +1 + 1 + 1 +1 + 1 + 1 x 0 + 1 = ?
1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1
1 + 1 x 0 + 1 =?
(x+1)+(x+1)+(x+1)+(x+1)+(x+1)=55
trình vày giúp tui zới
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\frac{\left(1-x\right)^2}{2}\)
\(P=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\frac{\left(1-x\right)^2}{2}\)
\(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right)\frac{\left(x-1\right)^2}{2}\)
\(P=\left(\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right)\frac{\left(x-1\right)^2}{2}\)
\(P=\frac{2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}\frac{\left(x-1\right)^2}{2}\)
\(P=\frac{\sqrt{x}\left(x-1\right)}{\sqrt{x}+1}=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}\)
tìm x
(x-1+1-1+1-1)=0
1 + 1 + 1 + 1 + 1 + 1 x 0 = ?
Chứng minh rằng :
\(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
với \(\hept{\begin{cases}x,y,z\ge0\\x,y,z\le3\end{cases}}\)