Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Song Phương

1) Xác định tất cả các hàm số \(f:ℕ\rightarrowℕ\) thỏa mãn đồng thời 2 điều kiện: \(f\left(2\right)=2\) và \(f\left(mn\right)=f\left(m\right).f\left(n\right)\).

2) Tìm tất cả các hàm \(f:ℤ^+\rightarrowℤ^+\) thỏa mãn \(f\left(f\left(n\right)+m\right)=n+f\left(m+2023\right)\)

 Giúp mình mấy bài này với ạ, này là 2 câu khó nhất trong bài về nhà của mình, ngày mốt là phải nộp rồi. Mình cảm ơn các bạn trước nhé.

Nguyễn Đức Tuấn
8 tháng 6 2023 lúc 23:12

câu 2: 

a) Trước tiên ta chứng minh f đơn ánh. Thật vậy nếu f (n1) = f (n2) thì

f (f(n1) + m) = f (f(n2) + m)
→n1 + f(m + 2003) = n2 + f(m + 2003) → n1 = n2

b) Thay m = f(1) ta có

f (f(n) + f(1)) = n + f (f(1) + 2003)
= n + 1 + f(2003 + 2003)
= f (f(n + 1) + 2003)

Vì f đơn ánh nên f(n)+f(1) = f(n+1)+2003 hay f(n+1) = f(n)+f(1)−2003. Điều này dẫn đến
f(n + 1) − f(n) = f(1) − 2003, tức f(n) có dạng như một cấp số cộng, với công sai là f(1) − 2003,
số hạng đầu tiên là f(1). Vậy f(n) có dạng f(n) = f(1) + (n − 1) (f(1) − 2003), tức f(n) = an + b.
Thay vào quan hệ hàm ta được f(n) = n + 2003, ∀n ∈ Z
+.


Các câu hỏi tương tự
Lê Song Phương
Xem chi tiết
Lê Song Phương
Xem chi tiết
Lê Song Phương
Xem chi tiết
Lê Song Phương
Xem chi tiết
Lê Song Phương
Xem chi tiết
Lê Song Phương
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết