Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cù Thị Thu Trang

1) Trong mặt phẳng tọa độ Oxy, viết phương trình đường thẳng (Δ) đi qua điểm A(1;-2) và song song với đường thẳng y=2x-1.

2) Trong mặt phẳng tọa độ Oxy, cho Parabol (P) y=x2 và đường thẳng (d): y=2(m-1)x-m+3. Gọi x1; x2 lần lượt là hoành độ giao điểm của (d) và (P). Tìm giá trị nhỏ nhất của biểu thức: \(M=x_1^2+x_2^2\)

Cù Thị Thu Trang
25 tháng 3 2022 lúc 9:10

1) y= 2x-4

HD: y=ax+b

.... song song: a=2 và b≠-1

..... A(1;-2)  => x=1 và y=-2 và Δ....

a+b=-2

Hay 2+b=-2 (thay a=2) 

<=> b=-4

KL:................

2) Xét PT hoành độ giao điểm của (P) và (d)

x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)

*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.

*) Theo hệ thức Viet ta có: 

S=x1+x2=2(m-1) và P=x1.x2=m-3

*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

Thay S và P vào M ta có:

\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)

 

Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)\(\dfrac{15}{4}\)

Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0

 

Khách vãng lai đã xóa

Các câu hỏi tương tự
Cù Thị Thu Trang
Xem chi tiết
Cù Thị Thu Trang
Xem chi tiết
Cù Thị Thu Trang
Xem chi tiết
Cù Thị Thu Trang
Xem chi tiết
Cù Thị Thu Trang
Xem chi tiết
Cù Thị Thu Trang
Xem chi tiết
Cù Thị Thu Trang
Xem chi tiết
Cù Thị Thu Trang
Xem chi tiết
Cù Thị Thu Trang
Xem chi tiết