Thay 999990=a vào biểu thức A ta được
\(A=\left(a+4\right)\left(a+9\right)\left(a+2\right)-\left(a+6\right)\left(a+1\right)\left(a+8\right)\)
\(=\left(a^2+13a+36\right)\left(a+2\right)-\left(a^2+7a+6\right)\left(a+8\right)\)
\(=a^3+2a^2+13a^2+26a+36a+72-a^3-8a^2-7a^2-56a-6a-48\)
\(=24\)
Thay b=44440 vào B ta được
\(B=\left(b+3\right)\left(b+8\right)\left(b+1\right)-\left(b+5\right)b\left(b+7\right)\)
\(=\left(b^2+11b+24\right)\left(b+1\right)-\left(b^2+5b\right)\left(b+7\right)\)
\(=b^3+b^2+11b^2+11b+24b+24-b^3-7b^2-5b^2-35b\)
\(=24\)
Vậy A=B (=24)