\(\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Rightarrow2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)
...
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2019}{2020}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)
Rồi bn tự tìm x nha!hok tot
\(\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow2\left[\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{x\left(x+1\right)}\right]=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)\(\Leftrightarrow x+1=4040\)\(\Leftrightarrow x=4039\)
Vậy \(x=4039\)