`1)`
a.\(2\sqrt{x}=\dfrac{1}{3}\)
\(ĐK:x\ge0\)
\(\Leftrightarrow\sqrt{x}=\dfrac{1}{6}\)
\(\Leftrightarrow x=\dfrac{1}{36}\) (tm)
Vậy \(S=\left\{\dfrac{1}{36}\right\}\)
b.\(2\sqrt{x}>3\)
\(ĐK:x\ge0\)
\(\Leftrightarrow\sqrt{x}>\dfrac{3}{2}\)
\(\Leftrightarrow x>\dfrac{9}{4}\)
Vậy \(S=\left\{x|x>\dfrac{9}{4}\right\}\)
`2)`
a.\(\dfrac{\sqrt{x}+1}{x-2}\)
\(ĐK:x\ge0\)
\(x-2\ne0\Rightarrow x\ne2\)
b.\(\dfrac{2}{\sqrt{\left(x+1\right)\left(x-1\right)}}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x^2-1}}\)
\(ĐK:x^2-1\ge0\)
\(\Leftrightarrow x^2\ge1\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)