Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha
B1:chứng minh rằng với mọi số tự nhiên(n>hoặc =2) luôn tìm được n số tự nhiên liên tiếp đồng thời là hợp số.
B2:Cho a= 50!=1.2.3........50 Chứng tỏ rằng 49 số tự nhiên sau đều là hợp số: a+2;a+3;a+4;.........;a+50
B3:Tìm k thuộc N,sao cho: a,7.k là số nguyên tố b,k;k+6;k+8;k+12;k+14 đề là số nguyên tố
Giúp mình nhanh với
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
1) tìm các số tự nhiên có 3 chữ số biết rằng khi nhân số đó với 3672 ta được kết quả là số chính phương
2) chứng tỏ rằng với mọi số tự nhiên n thì tích (n + 4). (n +5) chia hết cho 2
3) Chứng minh rằng số 111…12111...1 không phải là số nguyên tố 50 chữ số 1 50 chữ số 1
Cho n thuộc tập hợp sô tự nhiên sao cho n và n2+2 là số nguyên tố. Chứng minh n3+2 cũng là số nguyên tố.
a, Tìm số tự nhiên n sao cho(4-n)chia hết cho (n+1)
b, Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)×(n+6) chia hết cho 2
c, Cho a, b là hai số nguyên tố cùng nhau. Chứng minh rằng a và a+b cũng là 2 số nguyên tố cùng nhau
giúp mình nhé
Mình sẽ tick cho
1. Chứng minh rằng (với n thuộc N*)
A= 11...1211...1 (với n chữ số 1) là hợp số
2. cho các số nguyên tố 2;3;5;7;11;13
tìm các số nguyên tố từ 100 đến 150
3, tìm số tự nhiên aaaa sao cho nó chỉ có 2 ước là các số nguyên tố.
1.cho n=2.3.4.5.6.7 có
chứng tỏ 6 số tự nhiên liên tiếp sau đều là hợp số
2 .tìm n thuộc N sao cho n+8 chia hết cho n+1
3.tìm số tự nhiên p sao cho
a, 3p+5 là số nguyên tố
b,p+8 và p+10 là số nguyn tố