1/ \(-9a^2+a+5=-\left(\left(3a\right)^2+2\cdot a\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}\right)=-\left(3a+\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy GTLN của biểu thức bằng -19/4
Dấu "=" xảy ra \(\Leftrightarrow\left(3a+2\right)^2=0\Leftrightarrow3a+2=0\Leftrightarrow a=-\frac{2}{3}\)
2/ \(2a^2+2ab+b^2+2a+5=a^2+2ab+b^2+a^2+2a+5=\left(a+b\right)^2+\left(a^2+2a+1\right)+4=\left(a+b\right)^2+\left(a+1\right)^2+4=0\ge4\)
Vậy GTNN của biểu thứ bằng 4
Dấu "=" xảy ra \(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2=0\Leftrightarrow a+b+a+1=0\Leftrightarrow2a+b+1=0\Leftrightarrow2a=-1-b\Leftrightarrow a=-\frac{1+b}{2}\)
4/ Ta có:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\) ví x, y dương
\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{\frac{1}{4}}=8\)
Dấu bằng xảy ra khi và chỉ khi: x=y
khi đặt dấu âm ngoài ngoặc thì các số hạng trong ngoặc phải đổi dấu chứ???@@