\(2^{27}=2^{3.9}=8^9\)
\(3^{18}=3^{2.9}=9^9\)
Vì \(9^9>8^9\Rightarrow3^{18}>2^{27}\)
MK chỉ làm đc câu a) thui nha :
2^27 = 2^ 3.9 = 8^9
3^18 = 3^2.9=9^9
Vì 9^9 > 8^9 => 2^27 < 2 ^18
\(2^{27}=2^{3.9}=8^9\)
\(3^{18}=3^{2.9}=9^9\)
Vì \(9^9>8^9\Rightarrow3^{18}>2^{27}\)
MK chỉ làm đc câu a) thui nha :
2^27 = 2^ 3.9 = 8^9
3^18 = 3^2.9=9^9
Vì 9^9 > 8^9 => 2^27 < 2 ^18
So sánh các số hữu tỉ:
a) \(\frac{-17}{24}v\text{à}\frac{-25}{31}\)
b) \(\frac{-27}{38}v\text{à}\frac{-125}{195}\)
c) \(\frac{-22}{111}v\text{à}\frac{-27}{134}\)
So sánh các số hữu tỉ:
a) \(\frac{-17}{24}v\text{à}\frac{-25}{31}\)
b) \(\frac{-27}{38}v\text{à}\frac{-125}{195}\)
c) \(\frac{-22}{111}v\text{à}\frac{-27}{134}\)
* Giải chi tiết giúp mình !
So sánh
\(a,2^{30}+3^{30}+4^{30}v\text{à}3^{20}+6^{20}+8^{20}\)
\(b,2^{30}+3^{30}+4^{30}v\text{à}3.24^{10}\)
\(c,2^0+2^1+2^2+...+2^{50}v\text{à}2^{51}\)
So sánh :
\(a,2^{30}v\text{à}3^{20}\)
\(b,5^{300}v\text{à}3^{500}\)
\(c,2^{24}v\text{à}3^{16}\)
\(d,\left(0,3\right)^{40}v\text{à}\left(0,1\right)^{20}\)
So sánh:
a)\(2^{24}v\text{à}3^{16}\)
b)\(2^{300}v\text{à}3^{200}\)
c)\(71^5v\text{à}7^{20}\)
Câu 1: Chứng minh:
\(31.82+125.48+21.43=125.67=1500\)
Câu 2: So sánh:
1,\(\sqrt{51}-\sqrt{5}v\text{à}\sqrt{20}-\sqrt{6}\)
2,\(\sqrt{2}+\sqrt{8}v\text{à}\sqrt{3}+3\)
3,\(\sqrt{37}-\sqrt{14}v\text{à}6-\sqrt{15}\)
4,\(\sqrt{5}+\sqrt{10}v\text{à}5,3\)
So sánh\(2^{30}+3^{30}+4^{30}v\text{à}3.24^{10}\)
1. Tính
\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
2.So sánh
\(2^{24}v\text{à}3^{16}\) \(2^{150}v\text{à}3^{100}\)
mọi ng giúp mk với nhé, mk đang cần rất gấp!!!
So sánh:
\(\left(-\frac{1}{5}\right)^{255}v\text{à}\left(-\frac{1}{2}\right)^{579}\)