Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất.
Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)
Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)
Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)
Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)
Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y
Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...
Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...
Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn
a) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức: \(B=\left(1+\frac{x}{y}\right)\cdot\left(1+\frac{y}{z}\right)\cdot\left(1+\frac{z}{x}\right)\)
b) Tìm x, y, z biết:
\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Cách anh chị nào giỏi xem hộ xem em làm đúng chưa ạ, Em cảm ơn nhiều:tìm x y z\(|\frac{1}{4}-x|+\left|x-y+z\right|+\left|\frac{2}{3}+y\right|=0.\)
Vì \(\left|x\right|=xhay\left|-x\right|=x\)do đó giá trị truyệt đối của một số luôn là số dương cho nên để có phép tính cộng có các số hạng là các giá trị tuyệt đối mà bằng 0 thì các số hạng đó sẽ đều là 0.
\(\Rightarrow\left|\frac{1}{4}-x\right|=\left|x-y+z\right|=\left|\frac{2}{3}+y\right|=0\)
\(\Leftrightarrow\frac{1}{4}-x=0\)
\(-x=0-\frac{1}{4}\)
\(-x=-\frac{1}{4}\)
\(x=\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{3}+y=0\)
\(y=0-\frac{2}{3}\)
\(y=-\frac{2}{3}\)
\(\Leftrightarrow x-y+x=0\)
\(\frac{1}{4}-\frac{2}{3}+z=0\)
\(-\frac{5}{12}+z=0\)
\(z=0+\frac{5}{12}\)
\(z=\frac{5}{12}\)
\(\Rightarrow x=\frac{1}{4};y=-\frac{2}{3};z=\frac{5}{12}\)
1,Số cặp x,y trái dấu thỏa mãn \(\frac{1}{x-y}=\frac{1}{x}+\frac{1}{y}\)
2,Số các giá trị của x thỏa mãn \(\frac{\left|x-5\right|}{\left|x-3\right|}=\frac{\left|x-1\right|}{\left|x-3\right|}\)
3,Giá trị lớn nhất của \(A=\frac{a^{2014}+2013}{4^{2014}+1}\)
4,Độ dài đoạn thẳng AB (đon vị độ dài) biết A=(1;-3) ; B=(1;-1)
5 Giá trị của tổng x+y biết \(\frac{x-3}{y-5}=\frac{3}{5}\) và y-x=4
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Tìm các số nguyên x biết (IxI-3)(x2+4)<hoặc=4
Tìm x,y,z biết \(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
1/ Số nguyên dương thỏa mãn :
(x2 -19). (x2 - 30 ) < 0
2/ Giá trị lớn nhất : \(A=x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\)
3/ Số tự nhiên n lớn nhất để (24)9 chia hết 32n
4/ Tổng 3 số dương x, y,z biết x+ y+ z = xyz
5/ Giá trị x biết : ( x2 + 1).| 1 - 10x| =0
a) tìm giá trị nhỏ nhất của biểu thức C= \(\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)3
b) chứng tỏ rằng S=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không là stn với mọi n thuộc N , n>2
c) tìm tất cả các cặp số nguyên x,y sao cho : x-2xy+y=0
d)tìm tất cả các cặp số nguyên dương x,y,z thỏa mãn : x+y+z=xyz
1. Tìm các số a,b,c không âm thỏa mãn a+3c=8;a+2b=9 và tổng a+b+c có giá trị lớn nhất
2. Cho 3 số x,y,z khác 0 và x+y+z \(\ne\)0 thỏa mãn điều kiện:
\(\frac{\left(y+z-2x\right)}{x}=\frac{\left(z+x-2y\right)}{y}=\frac{\left(x+y-2z\right)}{z}\). Hãy chứng tỏ A = \(\left[1+\frac{x}{y}\right].\left[1+\frac{y}{z}\right].\left[1+\frac{z}{x}\right]\)là một số tự nhiên
Nhanh nha! Cảm ơn