1) \(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}=10\)
\(\Leftrightarrow\left(x^2+2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}\right)+\left(16y^2+2\cdot4y\cdot\frac{1}{y}+\frac{1}{y^2}\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(4y+\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{x}=0\\4y+\frac{1}{y}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\4y^2+1=0\end{cases}}\) ( vô lí )
Phương trình vô nghiệm
Câu 1 giống bạn kia:
Câu 2:Sửa đề nhé, tại thấy a,b thuộc N
\(M=\frac{b}{7\left(a+b\right)}\) ( đkxđ:\(a\ne-b\))
\(\Rightarrow\frac{1}{M}=\frac{7a}{b}+7\ge7\)\(\)(Vì \(a,b\in N\Rightarrow a,b\ge0\))
\(\Rightarrow M\le7\)
\(\Rightarrow M\)đạt GTLN là 7 khi \(\text{a=0}\) và \(b\ne0\)