1. Chứng tỏ các PT sau vô nghiệm: \(\frac{x^{2^{ }}+x+1}{x^{2^{ }}+1}\)=0
2. Giải PT sau: \(\frac{x+2}{x^{2^{ }}+2x+4}\)+\(\frac{x-2}{x^{2^{ }}-2x+4}\)=\(\frac{32}{x\left(x^{4^{ }}+4x^{2^{ }}+16\right)}\)
3. Cho BT: A=\(\frac{m+1}{m-2}\)-\(\frac{1}{m}\) và B=\(\frac{1}{m}\)+\(\frac{2+m}{m-2}\)
a, Thu gọn các biểu thức A và B.
b, Tìm m sao cho biểu thức A và B có giá trị bằng nhau.
c, Tìm m sao cho biểu thức A có giá trị bằng 1.
d, Tìm m sao cho biểu thức A+B=0
Bài 1 :
Ta có : \(\frac{x^2+x+1}{x^2+1}=0\)
=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}=0\)
Ta thấy \(\left\{{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\\x^2+1>0\end{matrix}\right.\)
=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}>0\)
Vậy phương trình vô nghiệm .
Bài 3 :
a, ĐKXĐ : \(\left\{{}\begin{matrix}m-2\ne0\\m\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}m\ne2\\m\ne0\end{matrix}\right.\)
Ta có : \(A=\frac{m+1}{m-2}-\frac{1}{m}\)
=> \(A=\frac{\left(m+1\right)m}{\left(m-2\right)m}-\frac{m-2}{m\left(m-2\right)}\)
=> \(A=\frac{m^2+m-m+2}{\left(m-2\right)m}=\frac{m^2+2}{m\left(m-2\right)}\)
Ta có : \(B=\frac{m+2}{m-2}+\frac{1}{m}\)
=> \(B=\frac{\left(m+2\right)m}{\left(m-2\right)m}+\frac{m-2}{m\left(m-2\right)}\)
=> \(B=\frac{m^2+2m+m-2}{\left(m-2\right)m}=\frac{m^2+3m-2}{m\left(m-2\right)}\)
c, Thay A = 1 ta được phương trình :\(\frac{m^2+2}{m\left(m-2\right)}=1\)
=> \(m^2+2=m\left(m-2\right)\)
=> \(-2m=2\)
=> \(m=-1\) ( TM )
Vậy m có giá trị bằng 1 khi A = 1 .
b, - Để A = B thì : \(\frac{m^2+2}{m\left(m-2\right)}=\frac{m^2+3m-2}{m\left(m-2\right)}\)
=> \(m^2+2=m^2+3m-2\)
=> \(3m=4\)
=> \(m=\frac{4}{3}\)
Vậy với A = B thì m có giá trị là 4/3 .
d, Ta có : A + B = 0 .
=> \(\frac{m^2+2}{m\left(m-2\right)}+\frac{m^2+3m-2}{m\left(m-2\right)}=0\)
=> \(2m^2+3m=0\)
=> \(m\left(2m+3\right)\)=0
=> \(\left[{}\begin{matrix}m=0\\m=-\frac{3}{2}\end{matrix}\right.\)
Vậy m = 0 hoăc m = -3/2 khi A + B = 0 .