\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
1. tính giá trị biểu thức: B = \(x^2-2x-\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}.\frac{1+x\sqrt{x}-\sqrt{x}-x}{1+x}\) với x=2017
2. cho 3 số dương a,b,c thỏa \(b\ne c,\sqrt{a}+\sqrt{b}\ne\sqrt{c}\) và \(a+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\).chứng minh \(\frac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\frac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)
3. cho \(S_k=\left(\sqrt{2}+1\right)^k+\left(\sqrt{2}-1\right)^k\)với \(k\in N\). chứng minh \(S_{2009}.S_{2010}-S_{4019}=2\sqrt{2}\)
4. cho x,y,z và \(\sqrt{x}+\sqrt{y}+\sqrt{z}\)là những số hữu tỉ. chứng minh \(\sqrt{x},\sqrt{y},\sqrt{z}\)là các số hữu tỉ
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)CHỨNG MINH LÀ SỐ HỮU TỈ
Chứng minh rằng \(\frac{1}{2\sqrt[3]{abc}}+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\forall a,b,c>0\)
Cho a,b,c là các số thực không âm. Chứng minh rằng:
\(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\le a+b+c+3\)
1/Cho các số thực dương. Chứng minh:\(ax+by+cz+2\sqrt{\left(ab+bc+ca\right)\left(xy+yz+zx\right)}\le\left(a+b+c\right)\left(x+y+z\right)\)
2/Cho 3 số thực tùy ý.Chứng minh: \(2\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le4xyz+\left(x^2+y^2+z^2\right)^{\frac{3}{2}}\)
3/ Với các số thực dương. Chứng minh : \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
4/ Với cácsố thực dương thỏa abc=1.Chứng minh:\(\left(1+\frac{2x}{y}\right)\left(1+\frac{2y}{z}\right)\left(1+\frac{2z}{x}\right)\ge\left(2+x\right)\left(2+y\right)\left(2+z\right)\)
1/Cho các số thực dương chứng minh:\(\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)
2/Cho a,b dương.Chứng minh:\(\left(\frac{a}{b}+\frac{b}{a}\right)+4\sqrt{2}\frac{a+b}{\sqrt{a^2+b^2}}\ge10\)
3/ Cho các số thực dương. Chứng minh: \(\left(a^2+2bc\right)\left(b^2+2ca\right)\left(c^2+2ab\right)\ge abc\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)\)
Cho a, b, c là các số thực dương thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le16\left(a+b+c\right)\). Chứng minh rằng:\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{8}{9}\)
các bạn làm được ý nào thì làm ý đó nha
1. Cho a,b,c là độ dài 3 cạnh tam giác. Chứng minh:
a) \(\frac{1}{\left(a+b-c\right)^2}+\frac{1}{\left(a-b+c\right)^2}+\frac{1}{\left(b+c-a\right)^2}\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
b) \(\frac{1}{\left(a+b-c\right)^3}+\frac{1}{\left(a-b+c\right)^3}+\frac{1}{\left(b+c-a\right)^3}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\)
c) \(\frac{1}{\left(a+b-c\right)^{200}}+\frac{1}{\left(a-b+c\right)^{200}}+\frac{1}{\left(b+c-a\right)^{200}}\ge\frac{1}{a^{200}}+\frac{1}{b^{200}}+\frac{1}{c^{200}}\)
d) \(\frac{1}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\sqrt{abc\left(-a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)}\)
e) \(a+b+c< \sqrt{a\left(b+c\right)}+\sqrt{b\left(a+c\right)}+\sqrt{c\left(a+b\right)}\)
f) \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}< \sqrt{6}\)
g) \(\sqrt{-a+b+c}+\sqrt{a-b+c}+\sqrt{a+b-c}\le\sqrt{3\left(a+b+c\right)}\)
Cho a, b, c là các số thực dương chứng minh rằng
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\) bé hơn \(2\)
Các bạn giúp mình nhé