1) Chứng minh bt sau ko phụ thuộc vào biến
a) ( x-1)\(^3\)- ( x+4) ( x\(^2\)- 4x+16) + 3x ( x-1)
b) (2x+3y) ( 4x\(^2\)- 6xy + 9y\(^2\)) - ( 2x - 3y ) ( 4x\(^2\)+ 6xy + 9y\(^2\)) - 27 ( 2y\(^3\)- 1 )
c) y( x\(^2\)- y\(^2\)) ( x\(^2\)+ y\(^2\)) - y( x\(^4\)- y\(^4\))
d) ( x-1)\(^3\)- ( x-1) ( x\(^2\)+ x + 1 ) - 3 ( 1-x).x
a: \(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
=-65
b \(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
=27
c: \(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
d: \(=x^3-3x^2+3x-1-x^3+1-3x\left(1-x\right)\)
\(=-3x^2+3x-3x+3x^2=0\)