Bài 2:
a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)
\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)
\(\Leftrightarrow-12x^2-28x-60=0\)
\(\Leftrightarrow3x^2+7x+15=0\)
\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)
Do đó: Phương trình vô nghiệm
b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)
\(\Leftrightarrow16x^2=32\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: Ta có: \(49x^2+14x+1=0\)
=>\(\left(7x+1\right)^2=0\)
hay x=-1/7