1. Cho tam giác ABC, điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho BD = EC. Gọi I và M thứ tự là trung điểm của DE và BC. Đường thẳng IM cắt các đường thẳng BD và EC lần lượt tại N và F.
a) Chứng minh rằng: góc BNM = góc CFM.
b) Đường thẳng qua I song song với AB cắt DM tại G. Đường thẳng qua I song song với AC cắt ME tại H. Chứng minh rằng GH song song với BC.
2. Cho hình vuông ABCD, M là điểm nằm trong hình vuông sao cho tam giác MCD đều. Gọi E là giao điểm của AC và MD, N là trung điểm của EB. Chứng minh rằng ba điểm A, M, N thẳng hàng.