Câu 1 :ta có \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-\left(m^2-1\right)=1\)
vậy \(\Delta^'\)không phụ thuộc vào m hay phương trình luôn có nghiệm với mọi giá trị của m
Câu 2 :
có \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)
để phương trình có hai nghiệm phân biệt thì : \(\Delta>0\Rightarrow\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
phương trình có hai nghiệm nên ta có viet: \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)theo giả thiết có : \(P=\left(x_1+x_2\right)^2-8x_1x_2\)thay viet vào phương trình có : \(P=m^2-8\left(m-1\right)=m^2-8m+8\)\(\Rightarrow P=8\Leftrightarrow m^2-8m=0\Leftrightarrow\hept{\begin{cases}m=0\\m=8\end{cases}}\)\(P=m^2-8m+8=m^2-8m+16-8=\left(m-4\right)^2-8\ge-8\)vậy nên \(P_{MIN}=-8\)Dấu "=" khi và chỉ khi \(m-4=0\Leftrightarrow m=4\)