1. Cho hệ tọa độ Oxy đường thẳng cắt trục tung tại điểm có tung độ bằng 2 và cắt trục hoành tại điểm có hoành độ -2 là đồ thị của hàm số?
2. Hệ phương trình \(\left\{{}\begin{matrix}mx-2x+y=3\\3x-2y=m\end{matrix}\right.\) có 1 nghiệm duy nhất khi?
3. Với giá trị nào của a và b thì 2 đường thẳng sau đây trùng nhau 2x+3y+5=0 và y=ax+b?
4.Độ dài đường tròn ngoại tiếp hình vuông cạnh bằng \(\sqrt{2}\) cm là?
1. Gọi đường thẳng cần tìm là (d): y = ax + b.
Giao điểm của (d) và Oy là A (0;2) => b = 2 (1).
Giao điểm của (d) và Ox là B (-2;0) => 2a + b = 0 (2)
Từ (1) và (2) ta có a = -1, b = 2. Vậy (d): y = -x + 2.
2. \(\left\{{}\begin{matrix}mx-2x+y=3\\3x-2y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2mx-4x+2y=6\\3x-2y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2mx-x=m+6\\3x-2y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+6\\3x-2y=m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì pt \(x\left(2m-1\right)=m+6\) có nghiệm duy nhất. Khi đó \(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}.\)
3.
2x + 3y + 5 = 0 ⇔ \(y=\dfrac{-2}{3}x-\dfrac{5}{3}\)
Để hai đường thẳng trùng nhau thì \(a=\dfrac{-2}{3};b=\dfrac{-5}{3}\).
4.
Bán kính đường tròn ngoại tiếp hình vuông là \(\dfrac{\sqrt{2}}{\sqrt{2}}=1\left(cm\right)\).
Độ dài đường tròn ngoại tiếp hình vuông là: 2π (cm).