a/b=c/d
=>a/c=b/d=a+b/c+d
=>a/b.c/d=(a+b)^2/(c+d)^2
=>ab/cd=(a+b)^2/(c+d)^2
Vay......
a/b=c/d
=> a/c=b/d=a+b/c+d
=> a/b.c/d=(a+b)^2/(c+d)^2
=> ab/cd=(a+b)^2/(c+d)^2
# Hok_tốt nha
a/b=c/d
=>a/c=b/d=a+b/c+d
=>a/b.c/d=(a+b)^2/(c+d)^2
=>ab/cd=(a+b)^2/(c+d)^2
Vay......
a/b=c/d
=> a/c=b/d=a+b/c+d
=> a/b.c/d=(a+b)^2/(c+d)^2
=> ab/cd=(a+b)^2/(c+d)^2
# Hok_tốt nha
Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\)(a,b,c,d khác 0,a khác +-b,c khác +- d)
Chứng minh rằng:
\(\frac{ab}{cd}\)=\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
cho \(\frac{a}{b}=\frac{c}{d}\) .CM \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2-b^2}{c^2-d^2}\) (b,c,d khác 0,c+d khác 0, c-d khác 0)
Cho |ad|=|bc|, cd khác 0, c khác + - d. Chứng minh rằng :
\(\left|\frac{a^2-b^2}{c^2-d^2}\right|=\left|\frac{ab}{cd}\right|\)
Cho |ad|=|bc|, cd khác 0, c khác + - d. Chứng minh rằng :
\(\left|\frac{a^2-b^2}{c^2-d^2}\right|=\left|\frac{ab}{cd}\right|\)
Bài 1: cho tỷ lệ thức a/b=c/d khác 1 và -1 và c khác 0. Hãy chứng minh:
A) \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
B) \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
Bài 2: cho biết a=c+b và c=bd/b-d(b khác d khác 0). Hãy chứng minh a/b=c/d.
Bài 3:Hãy chứng minh c =0 khi \(\frac{a+b+c}{a+b-c}=\frac{a+b+c}{a-b-c}\) với b khác 0
cmr nếu \(\frac{a}{b}=\frac{c}{d}\)
thì: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)(b+d khác 0)
Cho |ad|=|bc|, cd khác 0, c khác +_ d.Chứng minh rằng
\(\left|\frac{a^2-b^2}{c^2-d^2}\right|=\left|\frac{ab}{cd}\right|\)
Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR : \(\frac{\left(a-b\right)^{\text{4}}}{\left(c-d\right)^4}=\frac{a^4+b^4}{c^4+d^4}\)a,b,c,d khác 0
bài 1: cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
a) CMR: (a+2c)(b+d)=(a+c)(b+2d) \(\left(b,d\ne0\right)\)
b) CMR: (a+c)(b-d)=ab-cd
c) CMR: \(\frac{a}{a-b}=\frac{c}{c-d}\left(a,b,c,d>0;a\ne b,c\ne d\right)\)
bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}CMR:\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)